10.1. Cut points and injectivity radius. Let M be a complete Riemannian manifold, and let $p \in M$.

- (a) Show that if $\bar{p} \in M$ is a cut point of p along the unit speed geodesic $c: [0, l] \to M$, then p is a cut point of \bar{p} along $\bar{c}: [0, l] \to M$, $\bar{c}(t) := c(l-t)$.
- (b) Show that $\operatorname{inj}_p := d(p, \operatorname{Cut}(p))$ equals the supremum of all r > 0 such that $\exp_p|_{B_r}$ is injective, and also the supremum of all r > 0 such that $\exp_p|_{B_r} : B_r \to B(p,r)$ is a diffeomorphism.

10.2. Non-negative Ricci curvature and maximal volume. Show that a complete Riemannian *m*-manifold M with Ric ≥ 0 and

$$\lim_{r \to \infty} \frac{\operatorname{vol}(B(p, r))}{V_{m,0}(r)} = 1$$

for some $p \in M$ is isometric to \mathbb{R}^m .

10.3. Growth of finitely generated groups.

(a) Verify that for a free group on $k \ge 2$ generators, with generating set $A = \{a_1, \ldots, a_k\}$, the growth function satisfies

$$w_A(r) = \frac{k(2k-1)^r - 1}{k-1}$$

and hence $(2k-1)^r \leq w_A(r) \leq (2k+1)^r$ for all integers $r \geq 1$.

(b) Let $\tilde{M} = G$ be the nilpotent Lie group consisting of all 3×3 upper triangular real matrices with 1's on the diagonal (the *Heisenberg group*), and let Γ be the subgroup of all integer matrices. Then the quotient space \tilde{M}/Γ is a compact 3-dimensional manifold with fundamental group Γ . Show that Γ is generated by $A = \{x, y\}$, where $x = I + e_{12}$ and $y = I + e_{23}$, and there exist constants $c_2 \ge c_1 > 0$ such that

$$c_1 r^4 \le w_A(r) \le c_2 r^4$$

for all integers $r \ge 0$. (Theorem 6.11 and Theorem 6.12 then show that \tilde{M}/Γ does neither admit a metric with sec < 0 nor a metric with Ric ≥ 0 .) See the outline of Lemma 4 in J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7.